

VI Semester B.A./B.Sc. Examination, May 2017 (NS) (2013-14 and Onwards) (Semester Scheme) (Repeaters) (Prior to 2016-17) MATHEMATICS – VII

Time : 3 Hours

Max. Marks: 100

Instruction: Answer all questions.

I. Answer any fifteen questions.

(15×2=30)

- 1) Find the locus of the point z, satisfying $|z 1| \ge 2$.
- 2) Define analytic function. Give an example.
- 3) Verify whether $u = 3x^2y + 2x^2 y^3 2y^2$ is a harmonic function.
- 4) Find the orthogonal trajectories of the family of curves $x^2 y^2 = c$.
- 5) Define bilinear transformation.
- 6) Evaluate $\int_{0}^{1+i} (x^2 iy) dz$ along the line y = x.
- 7) State Cauchy's integral formula.
- 8) Evaluate $\int_{C} \frac{dz}{z(z-2)}$, where C is the circle |z| = 3.
- 9) Evaluate $\int_C \left[(3x + 2y)dx + (y + 2z)dy x^2dz \right]$, where C is the curve defined by x = t, $y = 2t^2$, z = 3, t varying from 0 to 1.
- 10) Evaluate $\int_{0}^{1} \int_{0}^{1} \left(x^2 + y^2 \right) dy dx.$
- 11) Show that $\iint_R y dxdy = \frac{4}{5}$, where R is the region bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$.

P.T.O.

- 12) Find the area of the circle $x^2 + y^2 = a^2$ by double integration.
- 13) Evaluate $\int_0^1 \int_0^2 \int_1^2 xyz^2 dxdydz$.
- 14) Show that area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is π ab, using Green's theorem.
- 15) If V is the volume of a region bounded by a closed surface S, show that $\iint_S \overrightarrow{r} \cdot \widehat{n} \, dS = 3V.$
- 16) Evaluate $\iint_S [(x+z)i + (y+z)j + (x+y)k] \cdot \hat{n} dS$, where S is the surface of the sphere $x^2 + y^2 + z^2 = 4$ by using Gauss divergence theorem.
- 17) Give an example of a set which doesn't have any point of accumulation.
- 18) If $\lim_{n\to\infty} a_n = b$ and $\lim_{n\to\infty} a_n = c$, then prove that b = c.
- 19) Define closure of a set.
- 20) Define subbase for a topology.
- II. Answer any four questions.

(4×5=20)

- 1) If $\frac{z-i}{z-1}$ is purely imaginary then show that its locus is a circle.
- 2) If f(z) = u + iv be an analytic function in the domain D of a complex plane then $u = c_1$ and $v = c_2$, where c_1 and c_2 are constants represents orthogonal family of curves.
- 3) Find the analytic function whose real part is $\frac{\sin 2x}{\cos 2x + \cosh 2y}$.
- 4) If f(z) = u + iv is analytic, then show that $\left[\frac{\partial}{\partial x} | f(z)|\right]^2 + \left[\frac{\partial}{\partial y} | f(z)|\right]^2 = |f'(z)|^2$.
- 5) Discuss the transformation $w = e^z$.
- 6) Find the bilinear transformation which maps $z=\infty$, i, 0 onto w=0, i, ∞

-3-

III. Answer any two questions:

- (2×5=10)
- 1) Evaluate $\int_0^{1+i} (x^2 iy) dz$ along the curves y = x and $y = x^2$.
- 2) Show that $\oint_C \frac{e^{2z}}{(z-2)^3} dz = 4\pi i e^4$ where C is the circle |z| = 3.
- 3) State and prove the fundamental theorem of algebra in complex variables.

IV. Answerany four questions.

- $(4 \times 5 = 20)$
- 1) Evaluate $\int (x + y + z) ds$ where C is the line joining the points (1, 2, 3) and (4, 5, 6).
- 2) Change the order of integration and evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$.
- 3) Show that $\int_{0}^{2a} \int_{0}^{\sqrt{2a-x^2}} x^2 dy dx = \frac{5\pi a^4}{8}$ by changing to polar coordinates.
- 4) Evaluate $\int_0^a \int_0^{\sqrt{a^2-x^2}} \int_0^{\sqrt{a^2-x^2-y^2}} dxdydz$.
- 5) Find the surface area of the sphere $x^2 + y^2 + z^2 = a^2$ by using double integration.
- 6) Evaluate $\iint_R xyz \, dxdydz$, where R is the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$ by transforming into cylindrical polar coordinates.

V. Answer any two questions.

(2×5=10)

- 1) State and prove Green's theorem in the plane.
- 2) Verify Gauss divergence theorem for $\overrightarrow{F} = (x^2 yz)i + (y^2 zx)j + (z^2 xy)k$ taken over the rectangular parallelepiped x = 0, y = 0, z = 0 and x = a, y = b, z = c.
- 3) Evaluate by Stoke's theorem for the function $\overrightarrow{F} = y^2i + xyj xzk$, where S is the hemisphere $x^2 + y^2 + z^2 = a^2$, $z \ge 0$.

VI. Answerany two questions.

(2×5=10

- 1) Prove that the union of any number of open subsets of R² is open.
- 2) Let $X = \{x, y, z\}$ and $\tau = \{X, \Phi, \{x\}, \{z\}, \{x, z\}\}$ then show that τ is a topology on X.
- 3) Let A and B be any two subsets of the topological space X, then prove that

i) If
$$A \subset B \Rightarrow \overline{A} \subset \overline{B}$$
 and

ii)
$$(\overline{A \cup B}) = \overline{A} \cup \overline{B}$$

4) Let (X, τ) be the topological space and A, B any two subsets of X, then prove that

i) int(
$$\phi$$
) = Φ

ii)
$$int(X) = X$$

iii)
$$A \subset B \Rightarrow int(A) \subset int(B)$$
.